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ABSTRACT: Recent studies have revealed the crucial role played by the
macro corrosion cell (potential coupling between the inside and outside of a
cavity) in crevice and pitting corrosion. It was found that acidification
and the existence of chloride ions in the local cell are not the sole and
necessary conditions for localized corrosion to occur, and that their
accelerating effects on crevice corrosion and pit growth can be explained
within the frame work of the macro cell (the IR drop mechanism). Upon
analysis of the results of the experiments, quantitative modeling, and the
literature, a new characteristic parameter - the critical distance into the
crevice, dc - has been suggested for indexing the crevice corrosion
resistance of a material under specified conditions. The advantages of using
dc as the index of the crevice corrosion resistance are: (1) it may be
obtained through experiment and may also be estimated through computational
approaches; (2) it has a distinct and straightforward physical meaning; (3)
it may be employed in engineering design and (4) it is a single parameter
which can reflect the integrated influence of several factors known to
affect the crevice corrosion resistance of a material from past practical
experience and research work. Preliminary work has shown good agreement
between the measured and the computed values of dc. The experimental
technique and the principle of the mathematical approach to obtain dc are
described.
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XNTRODUCTION

Numerous crevice corrosion testing methods have been proposed and used
with varying success. ASTM Specification G78 provides guidance in the
conduct of crevice corrosion tests for stainless steels and related nickel-
base alloys in sea-water and other chloride-containing environments [1],
although it does not provide any particular test technique. The large amount
of testing methods may be divided into two major groups. The first includes
those methods which involve the use of artificial crevices. Samples with
artificial crevices are immersed into the testing solution for a period of
time. The crevice corrosion resistance is evaluated by the number of
crevices which are found to have been corroded during the test. The spool
specimen test racks [2], Ferric chloride tests [3], the Materials Technology
Institute Tests (MTI-l to MTI-5) [4] and Multiple-Crevice Assembly Testing
[5] fall in this group. Among these, the Multiple-Crevice Assembly Testing
[5] is the most often used. The other group employs electrochemical
techniques. It includes two ASTM standard methods, ASTM G61 for iron-,
nickel- and cobalt-based alloys [6] and ASTM F746 for metallic surgical
implant materials [7], as well as other methods, e.g., potentiostatic test
[8); potentiodynamic test [9] and remote crevice assemblies test [10].
Although each of the techniques has its own merits and has been used with
varying success, the currently used testing methods have several conumon
problems. For instance, the data obtained through one of these tests can
only serve the purposes of comparison and screening but can not be used
directly for quantitative engineering design. Another problem is that data
obtained by the different methods are not convertible to each other.
Therefore, no method can be claimed to be the best. The reason for this may
lie in the lack of a generally recognised theory on crevice corrosion so
that it is difficult to link the method itself and the obtained data with
the crevice corrosion mechanism.

In the present paper, a brief introduction on the progress of the
mechanistic study of crevice corrosion is given first. Based on the new
progress, a characteristic parameter, dc - the critical distance into the
crevice - is proposed to index the crevice corrosion resistance of a metal.
The advantages for using dc are discussed. The suggested experimental
technique and the mathematical approach for obtaining dc are described.

PROGRESS ON THE UNDERSTANDING OF CREVICE CORROSION

Two major mechanisms on crevice corrosion have been proposed. The one
based on the solution composition change within crevices [e.g. 11] suggests
that the hydrolysis of dissolved metal ions increases the acidity (lowers
the pH) and the resulting autocatalytic effect increases appreciably the
metal dissolution rate (causing crevice corrosion). However, how the so
called autocatalytic effect can increase the corrosion rate within a crevice
has never been explained. As a matter of fact, the actual metal dissolution
rate measured in an acidified solution (equivalent to the hydrolysed crevice
electrolyte solution) is far less than the observed crevice corrosion
current density. Furthermore, crevice corrosion sometimes occurs in the
absence of a pH decrease. Another mechanism, the IR-drop mechanism [12-13]
focuses on the macro corrosion cell between the active crevice wall and the
passivated sample's outer surface where the (cathodic) reduction of oxygen
occurs. Or, in a potentiostatic test, the cathodic reduction occurs at the
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Fig. 1 (a) A crevice undergoing corrosion below dcwhere E < Epasssince ZR >
AV (b anodic polarization curve of the sample in the crevice solution.
Wc a Cross section micrograph of the crevice wail below dc where crevice
corrosion occurred (courtesy of K. Cho) .

counter electrode. The crevice corrosion process may be explained by the
potential distribution along the crevice wall (Fig. 1). Due to the electric
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shield effect, the electrode potential at some distance into a sufficiently
deep crevice always remains at the mixed or equilibrium potential in the
crevice electrolyte, referred to as the limiting potential (12,13),
irrespective of the more oxidizing potential at the outer surface. The
latter is established either by a potentiostat or by the reduction of
dissolved oxygen in the bulk solution at the passivated outer surface. Thus,
along the crevice wall, the local electrode potential decreases gradually
from the value at the crevice opening (the more oxidizing potential) to a
less oxidizing potential inside the crevice. At a certain distance, dc,
where the electrode potential equals the passivation potential of the anodic
polarization curve of the crevice electrolyte, the crevice wall changes its
state from passive to active. Thus, active dissolution occursbeyond dc to
the distance where the potential decreases to the limiting potential. The
crevice wall dissolution current is highest at distances slightly greater
than dc, corresponding to the peak current in the anodic polarization curve.
This can be seen in cross sections of the crevice wall as shown in Fig. lc
where the penetration of the crevice corrosion is deepest just to the right
of Epass. Since this potential distribution is controlled by the IR drop of
the dissolution current flowing out of the crevice (i.e., the IR drop within
the crevice must exceed the difference between the sample's outer surface
potential and the passivation potential, Epass, of the crevice electrolyte
polarization curve, IR > sf (Fig. 1), in order that crevice corrosion
occurs), this process is referred to as IR induced crevice corrosion. The IR
drop mechanism suggests: (1) Crevice corrosion is due to the macro corrosion
cell involving well separated anodic and cathodic reactions occurring at
very different electrode potentials. This is consistent with the generally
accepted current understanding of crevice corrosion. (2) The highest metal
dissolution rate within a crevice corresponds to the peak current of the
crevicing electrolyte polarization curve. That is, the crevice corrosion
current is the anodic dissolution rate at high anodic overpotentials within
the active region, which is hundreds or even a thousand times larger than
the corrosion rate at the limiting potential due to local micro corrosion
cells deeper in the crevice or at the corrosion potential (or applied
potential) existing at the outer surface in the passive region. The IR
mechanism overcomes the difficulty of the traditional hydrolysis mechanism
which is solely based on the composition changes of the solution, not
considering the distribution of anodic overpotential on the crevice wall.

The iR-drop mechanism can satisfactorily explain the accelerating
effect on crevice corrosion of the pH decrease (due to hydrolysis) and of
the chloride ion build up in the crevice. The pH decrease of the crevice
electrolyte and the chloride ion build up may always result in a higher peak
current and a more noble passivation potential in the anodic polarization
curve, which in turn increases the maximum anodic dissolution rate on the
crevice wall (IR increases) and decreases the Df value. Consequently, the
total crevice corrosion current increases. The increase in IR and decrease
in Df both lead to a decrease in the dc value.

CRXTCAL DISTANC3 INTO THE CREVICE, de

The critical distance into the crevice, dc, at which the crevice wall
changes its state from passive into active, has a specific meaning for
crevice corrosion. When the depth of a crevice is less than the maximum
critical distance under the specified conditions, the crevice wall will be



fully passivated and no crevice corrosion occurs. On the other hand, when
the depth is larger than the maximum critical distance, the crevice will be
active at distances into the crevice greater than the dc distance. It has
been found, in both experiments and computations [15-193, that the critical
distance into the crevice, dc, is affected by several parameters as shown in
Figs. 2 and 3. The crevice gap dimension has a remarkable influence on dc.
The larger the crevice gap, the larger the dc (Fig. 2a). On the other hand,
the crevice depth, do, has a weak influence and dc, with dc increasing
slightly as do decreases to the dc value, i.e., the maximum dc occurs for dc

sdo [14). The magnitude of the passive current density affects dc to a
less extent than the gap dimension, with a larger passive current giving
rise to a smaller dc (Fig. 2b). A high solution conductivity decreases the
resistance and so increases dc (Fig. 2c). Also the higher (more oxidizing)
the electrode potential (produced by an oxidant or power supply) at the
sample's outer surface, the larger the dc. An almost linear relationship
exists between d and the outer surface electrode potential (Fig. 3). In
addition the anoaic behaviour of the metal, especially the peak current in
the anodic polarization curve, has been found to significently influence dc.
To have the same critical distance for a larger crevice gap requires a
higher peak current density for otherwise identical conditions [18]. All
these relations are fully compatible with the IR drop mechanism.

The above factors affecting dc are surprisingly consistent with those
factors which are known, by experience and past research work, to influence
the crevice corrosion resistance of materials. In the work by Fitzgerald and
his predecessors [20-23], the crevice corrosion resistance has been found to
increase with increasing crevice gap, passive potential range and solution
conductivity but with decreasing peak current density of the anodic
polarization curve and the active potential range. These are exactly the
same factors affecting dc described above. Therefore, it may be suggested to
use the critical distance into the crevice, dc, as the index of the crevice
corrosion resistance of a material, i.e., the larger the dc in a specified
situation, the more resistant the material is to crevice corrosion.

The advantages of using dc are apparent. First, it has a distinct and
straightforward meaning. That is, dc is the distance into a crevice beyond
which crevice corrosion occurs. Secondly, dc may be used in corrosion
prevention design. As stated before, when the depth of an existing crevice
do, is less than dc for the specified conditions, the crevice will be in the
passive state and so it can be tolerated. But when do is larger than dc, the
crevice wall beyond dc will be in the active state and crevice corrosion
will occur down to the of the limiting potential. A Nomograph or table of
the relationship between dq and the crevice geometry in a specified
environment/metal combination may be prepared by computations (as explained
later) and experiments. By referring to the graph or table, one may find out
whether a crevice is safe (no crevice corrosion) or not. Thirdly, dc is a
single parameter to represent the crevice corrosion resistance. It combines
the comprehensive effects of the several factors affecting the crevice
corrosion resistance (the peak current density, the solution conductivity,
the passive potential, etc.).

EXPERIMZNT FOR MZASURING dc

The experimental set up for measuring dc is given in Fig. 4a. It
consists of a three electrode corrosion cell, a potentiostat and a current
recording device. The working electrode is made of the material to be
tested. An artificial crevice is made on it. Two kinds of artificial crevice
may be used: the straight crevice (Fig. 4b) and the cylindrical crevice
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(Fig. 4c). The former has been used for a long time in the Corrosion
Laboratory of the Department of Materials Science and Engineering, The
Pennsylvania State University. The straight crevice is made of a flat pyrex
sheet on which a groove, 0.5 cm x 1.0 (or longer, say 2.0) cm x g, was cut,
where g is the crevice gap dimension which can be made as small as 25 mm.
The grooved face of the pyrex sheet is pressed against the flat surface of
the sample. Thus, an artificial crevice of dimensions 0.5 cm x 1.0 cm (or
longer) x g cm is formed. One advantage of using the straight crevice is
that a camera may be installed in front of the pyrex sheet so that the
crevice corrosion process may be observed and recorded in situ (17). The
cylindrical crevice is made of a hole drilled into a bulk component and a
core component which is to be inserted into the hole. The core component may
be positioned in the center of the hole by an orifice. The crevice is formed
between the walls of the hole and the core. The bulk component is made of
the testing metal or alloy and the core is made of an insulating high
polymer, or the opposite. Alternatively, both the bulk and the core
components may be made of the material to be tested. This device is similar
to that used by France and Greene (23]. By adjusting the diameters of the
hole and the core, the crevice gap may be adjusted.

The Luggin probe is placed close to the crevice opening to minimize
the IR drop between the sample's outer surface and the opening of the
capillary. This is particularly important when the solution conductivity is
low. The area of the counter electrode should be large enough to make the
potential distribution at the sample's outer surface more uniform so that
the electrochemical test may best simulate the actual crevice corrosion
situation in the natural environment. The test solution can be the one in
which the metal is immersed during its service or a specially prepared
corrosive solution for accelerating the test. The applied potential at the
sample's outer surface must be within the passive region of the anodic
polarization curve of the tested material. For comparison of different
materials, the applied potential and the crevice gap dimension should be the
same. The total current of the circuit is monitored from the beginning of
the test. It takes a few hours for the current (which is mainly the current
flowing out of the crevice) to reach a relatively stable value. After a
period of time (one or two days if the peak current is large, or one or two
weeks if the peak current is low), the experiment is terminated and the
crevice wall or cross section is checked in an optical microscope to measure
the critical distance. Sometimes the current declines to a very low value
after an initial high reading, indicating that the crevice has become
passivated. For some material/environment combinations, e.g., 304 stainless
steel in sea water, the anodic polarization curve does not exhibit an
active-passive transition and so the initial current reading is low. It
takes longer time for the acidification and chloride on buildup to occur,
and then the crevice corrosion current increases with time.

In the steady state, the potential distribution in the system observes the
Laplace equation. For a straight crevice, in Cartesion coordinates, it is
written as

?2, V + =f
& 2
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Fig. 4 (a) Experimental set up for Measuring the critical distance into the
crevice, dc: l.working electrode (the sample); 2. crevice; 3. Luggin
capillary; 4. counter electrode; 5. gas purger; 6. reference electrode; 7.
precision resistor for current measurement; 8. potentiostat; 9. pen
recorder. (b) straight crevice with transparent (Plexiglas) wall. (c)
cylindrical crevice.

For a cylindrical crevice, in cylindrical coordinates, the Laplace equation
has the following form:

a12  1a &2

3ITIMATIOE OF 6e BY COIMUTATION

Another advantage of using dc is that it can be estimatid by
computation. The coordinate system for the computation is shown in Fig.5.
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Fig. 5. (a) Boundary conditions for the computation of dc (Cartesian
coordinates, straight crevice). (b) Boundary conditions for the computation of
dc (cylindrical coordinates, cylindrical crevice).

The boundary condition at the sample's outer surface (S in Fig. 5) is:

where El is the applied potential at the sample's outer surface. Along
boundaries encircling the system (B in Fig. 5), the boundary condition is:



In the upper part of the crevice wall (passivated part, C1 in Fig. 5), the
boundary condition is:

where ipass is the passive current and s1is the solution conductivity. In
the bottom part of the crevice (active 1iss 3 ion part, C2 in Fig. 5), the
boundary condition becomes:

V. =-E,2 f= =2 On-

where E 2 =6f(i2) is the active loop portion of the anodic polarization
curve. This boundary condition is non linear with respect to the potential
and its gradient.

The above Laplace equation contains a non linear boundary condition
and so can not be solved by conventional numerical methods. A boundary
variation and trial and error technique may be used to solve the problem.
The full details of the computation method have been given elsewhere [14-
16]. The solution of the Laplace equation is the potential distribution in
the system, including on the crevice wall. Thus the critical distance into
the crevice, dc , where the potential is decreased to the passivation
potential, Epass, may be obtained. From the potential distribution and the
polarization curve, the current distribution along the crevice may be
determined. Then by integration, the total crevice corrosion current, I, may
also be calculated. Preliminary computation has shown good agreement between
the computed and the experimental values. Tables 1 and 2 and Fig. 2a are
comparisons of the computation results with experiments for high purity iron
in an acetic acid buffer solution [163.

TABLE 1. Comparison between the computational (15,16] and experimental data
(16,181 of the critical crevice distance into the crevice, dc, and the total
crevicing current, I, for pure iron in 0.5 M acetic acid + 0.5 M sodium
acetate solution. Crevice gap: g - 0.05 cm; applied potential at the
sample's outer surface: E1 - 115 mV (SCE); crevice length: 1 - 0.5 cm;
crevice depth: do - 1.0 cm.

Critical distance, dc Total crevicing current, I

(cm) (MA)

Computational Experimental Computational Experimental

0.14 0.12-0.20 1.2 1.2-1.4



It is noted here that the above computation can only give an
estimation of the dc because of two reasons. (1) the polarization curve of
the crevice electrolyte should be used in the computation. If the
polarization data for the bulk solution is used, the obtained dc is accurate
only at the beginning of the crevice corrosion process when the composition
of the crevice solution has not changed appreciably. With the progress of
crevice corrosion, the composition and pH of the crevice electrolyte change
with time and so does dc. (2) The shape of the crevice changes with time due
to corrosion so that the boundary condition on the crevice wall should also
be changed with time. Thus, using the original boundary condition results in
additional errors in dc. Therefore, although the computation can sometimes
give a good estimation of dc, it can not replace the experiment.

TABLE 2. Comparison between the computational and experimental data of the
critical distance into the crevice, dc, for high purity iron on 0.5 M acetic
acid + 0.5 M sodium acetate solution at different applied potentials, El, at
the sample's outer surface. Crevice gap: g-0.05 cm; crevice depth: do -
1.0 cm.

Applied potential, E1  Critical distance, dc
(mY SCE) (cm)

Computational Experimental

115 0.14 0.12-0.20

485 0.37 0.29-0.31

801 0.55 0.41-0.45

SUKMARY

A new index for the corrosion resistance of materials - the critical
distance into the crevice, d - has been proposed. At dc the local
potential of the crevice wali is the passivation potential in the anodic
polarization curve of the material in the crevice electrolyte. At greater
distances, the crevice undergoes active anodic dissolution (crevice
corrosion) down to the distance of the limiting potential. The larger the
dc, the better the crevice corrosion resistance of the material. Two
artificial crevice designs have been introduced which can be used to measure
the critical distance into the crevice. The dc may also be estimated through
computation. The advantages in using dc as the index of crevice corrosion
resistance have been discussed.
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